.
  

Математическая психология

Математическая психология - модель урныМатематическая психология занимается вопросами теоретических измерений и шкалирования, то есть, стремится отразить психологические явления формализованным (математическим) языком.

Ее цель — не создание отдельной прикладной сферы или направления, а создание математических моделей для всех (в принципе) психофизических исследовательских проблем. Для этого используется специфический для математики аксиоматико-дедуктивный метод.

Главная методическая парадигма заключается в практической проверке формальных моделей и гипотез, например, на реальном переходе от ложного к правильному. Для этого применяются методы математической статистики и теории вероятностей.

Процесс математизации начался в психологии практически с момента ее выделения как экспериментальной дисциплины. Первыми психологическими работами, в которых авторы применяли количественные математические методы анализа психических явлений, были работы Г. Фехнера (1860), Г. Эббингауза (1885) и др.

Сам термин «математическая психология» вошел в употребление позднее — в начале 1960-х гг. Он ведет свое происхождение от теории информации и кибернетической модели (Кумбс и др.).

Сегодня математическая психология занимается шестью основными направлениями:

  • выработкой размерности, то есть квантификацией психических феноменов (теория измерений);
  • возведением феноменов к математической модели (аксиоматизация);
  • способностью к отражению в зависимости от течения процессов: постоянные, осцилляторные, мутационные (компонентный анализ);
  • экстраполяцией процессов (прогноз будущих разработок, напр., анализ путей развития);
  • математическим описанием сетевых систем (сетевое планирование);
  • математическим описанием действий (напр., модели выбора).

Особенно важны теории математической психологии для:

  • теории обучения с математическим воспроизведением формалистических процессов научения (модели «стадий»)
  • психофизиологии, особенно при математическом отражении кривых ЭЭГ;
  • теории информации, относительно множеств, оцифровки и декодирования информации;
  • теории решений, напр. при регулировании преференций;
  • теории полезного действия, а также в вероятностных моделях при повторении решений.

В теории тестов наряду с детерминистическими моделями создают также и математические модели (напр., модель Раша), которые должны способствовать стохастической ориентированному предвидению при абсолютном шкалировании.

На. рис.: в известной модели урны воспроизведены стохастические или случайные процессы. Приведенная формула отражает независимый стохастический процесс путем задания всех распределений вероятности.

Основные направления в психологии

Бихевиоризм

Феноменологическая психология

Психология развития

Психофизиология

Глубинная психология

Когнитивная психология

Экологическая психология

Математическая психология

Прикладная психология

Канал в Telegram: @PsyfactorOrg
 
.
   

© Copyright by Psyfactor 2001-2017.
© Полное или частичное использование материалов сайта допускается при наличии активной ссылки на Psyfactor.org. Использование материалов в off-line изданиях возможно только с разрешения администрации.
Контакты | Реклама на сайте | Статистика | Вход для авторов